Abstract

This paper studies the influence of a new bio-based capillary active insulation (CAI) materials (corn stalk based vegetal derived concrete namely CS-1 and CS-2) and two traditional insulation materials (aerated autoclaved concrete (AAC) and aerated insulation brick (IB)) on the hygrothermal properties of multilayer wall. The reference wall consists of solid brick masonry plastered on the internal and external sides. Walls based on CAI materials consist of an extra layer of insulation and weather-resistive barrier (WRB) on the façade surface. Simulations were performed under the natural climatic condition of hot-humid and cold regions. Optimum thickness for the bio-based CAI materials to be used as internal insulation was 100 mm beyond which higher insulation thickness triggered the risk of mould growth. All walls based on CAI insulation materials (CS-1, CS-2, AAC, and IB) showed the mould index (MI) within the acceptable range. Bio-based CAI materials showed considerable improvement in the temperature and relative humidity at the interior surface. CAI materials reduced the heat losses through the wall by 58–69% as compared to the reference wall. Drying behavior of the wall was significantly improved with the combination of CAI and WRB and no risk of condensation was observed in the walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.