Abstract
Internal insulation of external walls is known to create moisture performance challenges due to increased moisture levels and condensation risk on the cold side of the insulation. Capillary active/hydrophilic insulations have been introduced to solve these moisture problems, since they are able to transport liquid moisture to the inner surface and enable it to dry. Experience with this insulation type is rare in Denmark. In hygrothermal 1D computer simulations, several more or less capillary active insulation systems (AAC, calcium silicate, IQ-Therm) in various thicknesses (30–150mm) have been tested for their hygrothermal performance. The original construction was a 228mm solid brick masonry wall in a Copenhagen historic dormitory. All simulated systems showed critical relative humidity values above 80% and high risk of mould growth behind the insulation and some also on the interior surface. A moisture safe construction was only achieved when exterior façade impregnation shielding against driving rain was added. The best system showed acceptable relative humidity values both behind the insulation and on the interior surface, a significant increase in minimum temperature on the interior surface, and a reduction of heat loss through the external wall by 85%. The solely application of impregnation also resulted in a moisture safe solution with significant improvements in all parameters and heat loss reduction by 45%. The main conclusion is that capillary active insulation may not be feasible on solid bare masonry walls without additional driving rain protecting especially in case of multi-storey buildings with thin walls in high precipitation areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.