Abstract

The present project investigated the hygrothermal performance and risk of mould growth in solid masonry walls retrofitted internally with three diffusion-open bio-based insulation materials (two loose-fill cellulose and one hemp fibre), installed in test containers with controlled indoor climate. Focus was on bio-based insulation materials, as these are upcoming due to necessary CO2 reductions and because the hygroscopic properties of bio-based materials are different from traditional insulation materials like mineral wool therefore, some manufacturers claim a vapour barrier is unnecessary, even in relatively cold climates. The project was a large experimental study in two reefer containers with reconfigured facades, in which solid masonry walls with embedded wooden elements were constructed. The study focused on the conditions in the masonry/insulation interface and in the embedded wooden elements. The effect of hydrophobization and different indoor moisture loads were also investigated. Moreover, the bio-based insulation systems were compared with a wall insulated with the traditional mineral wool and vapour barrier system. Relative humidity and temperature were measured at several locations in the test walls for 1 year and 9 months. Measurements show that exposed masonry walls retrofitted internally with diffusion-open bio-based insulation materials resulted in unacceptably high moisture levels (>80% RH over longer periods). Lower moisture levels were observed when the internal insulation was combined with hydrophobization against wind-driven rain, but unacceptably high moisture levels still occurred (60%–70% in summer and 95%–100% in winter in the interface). Hydrophobization reduced the moisture levels in the interface and embedded wooden elements only in walls facing southwest, which is the direction with the most wind-driven rain. Mould growth tests showed no growth in the interface in walls insulated with cellulose insulation (mycometer surface value <25). Meanwhile growth was found in all four walls insulated with hemp fibre matts (mycometer surface value >400).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.