Abstract
Displacement laser interferometers and grating interferometers are two main apparatus for the micron-nanometer displacement measurement over a long range. However, the laser interferometers, whose measuring scale is based on the wavelength, are very sensitive to the environment. On the contrast, the grating interferometers change the measuring scale from wavelength to grating period, which is much stable for the measurement results. But the resolution of grating interferometer is usually lower than that of laser interferometer. Therefore, further investigation is needed to improve the performance of grating interferometer. As we known, the optical subdivision is a main factor that affects the measurement resolution. In this paper, a grating interferometer with high optical subdivision is presented based on the Littrow configuration. We mainly use right angle prisms accompanied with plane mirrors to make the measuring lights diffracted by the grating scale for many times. An optical subdivision factor of 1/24 can be obtained by this technique. A main difficulty of this technique is that the grating scale should be with high diffraction efficiency. Fortunately, the measuring light is incident on the grating scale at the Littrow angle, the grating scale can be designed with very high efficiency easily in this condition. Compared with traditional grating interferometers, this kind of grating interferometer can greatly increase the measuring resolution and accuracy, which could be widely used in nanometer-scale fabrications and measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.