Abstract
This study compared the chemical, structural, and luminescent properties of xerogel-based ceramic powders (CPs) with those of a new series of crystallized aerogels (CAs) synthesized by the epoxy-assisted sol-gel process. Materials with different proportions of Eu3+ (2, 5, 8, and 10 mol%) were synthesized in Lu2O3 host matrices, as well as a Eu2O3 matrix for comparative purposes. The products were analyzed by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), photoluminescence analysis, and by the Brunauer-Emmett-Teller (BET) technique. The results show a band associated with the M-O bond, located at around 575 cm-1. XRD enabled us to check two ensembles: matrices (Lu2O3 or Eu2O3) and doping (Lu2O3:Eu3+) with appropriate chemical compositions featuring C-type crystal structures and intense reflections by the (222) plane, with an interplanar distance of around 0.3 nm. Also, the porous morphology presented by the materials consisted of interconnected particles that formed three-dimensional networks. Finally, emission bands due to the energy transitions (5DJ, where J = 0, 1, 2, and 3) were caused by the Eu3+ ions. The samples doped at 10 mol% showed orange-pink photoluminescence and had the longest disintegration times and greatest quantum yields with respect to the crystallized Eu2O3 aerogel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.