Abstract

The thesis work presented is part of the work in the Laboratory of New Materials for Photovoltaic Energy in the main target to use low cost techniques for elaboration of Perovskite and Copper, indium, gallium, and selenium CIGS materials for photovoltaic application. Organic-inorganic lead halides perovskites have currently and exceptionally appeared as new materials for low cost thin film solar cells specially that the efficiency of perovskite based solar cell have jumped from 3.8% to 22.7% in short time.in other hand, CIGS solar cells record 23.35% efficiency and still can be boosted. Here, we report the elaboration and characterization of CIGS as well as methylammonium lead iodide perovskites MAPbI3 and formamidinuim iodide lead iodide perovskites FAPbI3 absorbers for perovskite-based solar cells and Tandem Perovskites/ CIGS. The thin films prepared were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis, atomic force microscopy (AFM), transmission electron microscopy (TEM), Photoluminescence analysis (PL) and UV-Vis spectroscopy. The first stage was devoted for the effect of different parameters on the growth of CIGS by electrodeposition and we investigate the impact of different back contact in structural and optical proprieties. In a second stage, we report the growth of CIGS films by spray pyrolysis, we studied the effect of experimental parameter also the annealing process which is the key factor for improving the performance of solar cells,subsequently we elaborated different films constituted CdZnS/CdS/CIGS/Mo solar cells, the approach is to change the toxic ZnO by using a transparent, conductive CdZnS layer. In other hand, MAPbI3 film was investigated in order to optimize the chemical composition and to study the crystallization process also to get sight about the stability of perovskite materials to meet the requirement of their application as an active layer in perovskite solar cell. For this purpose. the MAPbI3 film surface was treated by adding diethyl ether antisolvent with different rates. during the treatment complex exchanges are appearing at the same time under the influence of quite a lot of physicochemical properties. A whole understanding of this topic is critically important for improving solar cell performance. MAPbI3 doped by the tetrabutylammonium TBA is boosting the formation of perovskite structure, leading to a higher orientation along the (110) and shows better crystallinity, large grain size, pinhole-free, which is suitable for the manufacturing of the optoelectronic devices with higher performance. Also, we have identified the impact of TBA in the photo-physical properties, we have noticed that the TBA improve the photoluminescence emission by reducing the density of trap states and the optical absorption indicates a significant shift to the lower wavelength and optical bandgap varied from 1.8 to 1.52 eV. Finally, the stability was explored for 5% TBA, it found that after 15 days the stability remained excellent in relative humidity of ~60%. These results would be helpful for realizing stable and high performance MAPbI3-based devices. Furthermore, we inspect the effect of monovalent cation substitution of Guanidinium (GA) on the structural and optical properties of FAPbI3 thin films perovskites. The ratio between the desirable a-phase and the undesirable y yellow phase is studied as a function of GA content. GA doping is shown to be efficient in the control of a/y phases ratio and then in the stabilization of the a-FaPbI3 phase. We qualitatively evaluate the impact of 10% of guanidinium on the phase composition and microstructure of films. The results show that an adequate amount of 10% GA:FaPbI3 leads to a homogeneous perovskite film with stable a phase, large grains, and free pinholes. 10% GA: FaPbI3 films demonstrate excellent stability after aging for 15 days in relative humidity of~60%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.