Abstract

The relationship between the steady-state level of membrane potential (delta psi) and the rates of energy production and consumption has been studied in mitochondria and submitochondrial particles. The energy-linked reactions investigated were oxidative phosphorylation (with NADH, succinate, and beta-hydroxybutyrate as respiratory substrates) and nucleoside triphosphate-driven transhydrogenation from NADH to NADP and uphill electron transfer from succinate to NAD. Results have shown the following. 1) Attenuation of the rates of the energy-producing reactions results in a parallel change in the rates of the energy-consuming reactions with little or no change in the magnitude of steady-state delta psi. 2) At low rates of energy production and consumption, steady-state delta psi decreases. However, this is due largely to the energy leak of the system which lowers static-head delta psi when the rate of energy production is slow. 3) When the rate of energy production and static-head delta psi are held constant, and the rate of energy consumption is diminished by partial inhibition or the use of suboptimal conditions (e.g. subsaturating substrate concentrations), then even a small decrease in the rate of energy consumption results in an upward adjustment of the level of steady-state delta psi. The lower the rate of energy input, the greater the upward adjustment of steady-state delta psi upon suppression of the rate of energy consumption. 4) The above results have been discussed with regard to the role of bulk-phase delta mu H+ or delta psi in the mitochondrial energy transfer reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.