Abstract

AbstractA series of CuCe0.75Zr0.25Ox catalysts (CCZ) were synthesized based on the environmental‐friendly bacterial cellulose (BC) by using the sol‐gel method. The corresponding synthesis mechanism, physicochemical properties of the catalysts and catalytic performances for toluene oxidation were comprehensively studied. In the presence of BC without sugar, the CCZ−A synthesized by ethanol‐gel exhibits better catalytic activity than the CCZ−W synthesized by water‐gel, which may be due to the different roles of BC in different solvents. However, it is worth noting that the graft copolymerization between BC and active metal (Ce4+, Cu2+) is the same process in both water‐gel and ethanol‐gel. The activity of CCZ‐SW synthesized by water‐gel using BC with sugar is obviously higher than that of CCZ−W and CCZ−A. The temperature of complete degradation of toluene over CCZ‐SW is 205 °C, which is 35 °C lower than that of CCZ−W. The results from BET, Raman and H2‐TPR indicate that the larger the specific surface area, the more oxygen vacancies and better low‐temperature reducibility, that are mainly responsible for the excellent activity of CCZ‐SW. The existence of sugar in BC could hinder the agglomeration of active metal particles during the calcination process. Combined with the results of in situ DRIFT, the adsorbed toluene on the catalyst surface is oxidized into alkoxide, aldehydic and carboxylic acid species as intermediates before the complete oxidation into CO2 and H2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.