Abstract
This paper presents observations and investigations of the detailed structure and mechanism of turbulent heat transfer in the turbulent boundary layer with separation and reattachment by means of direct numerical simulation (DNS). In order to observe turbulent heat transfer in a boundary layer with reattachment and separation, a DNS of the boundary layer with heat transfer over a 2-dimensional block (2DB) is carried out, in which the effects of Reynolds number and block size are observed. The lengths of reattachment and maximum Stanton number points behind 2DB become longer with an increase in Reynolds number in the case of similar block size with one exception. On the other hand, these points become shorter with an increase in the width of the 2DB. Moreover, the counter gradient diffusion phenomenon (CDP) of the thermal field can be found on the 2DB. A quadrant analysis is carried out to investigate the turbulence motion which decides Reynolds shear stress and the wall-normal turbulent heat flux in the turbulent boundary layer with heat transfer over 2DB, in which it can be found that Q1 and Q3 events (i.e., interactions) affect the occurrence of CDP on 2DB. Also, the correlations among instantaneous fluctuating temperature, temperature gradient and vorticities to observe the turbulent structures of heat transfer around 2DB are clearly shown in the present DNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.