Abstract

The catalyst loading random distribution has a divergent effect on heat transfer and electrical property inside fuel cells than the catalyst loading homogeneous distribution, but the effects of different stoichiometric ratios and average platinum loadings on electrical property, heat as well as species transfer in the fuel cell considering catalyst content random setting are still unclear. Hence, the impacts of stoichiometric ratios and average platinum loadings on the electrical property of fuel cell considering catalyst content random distribution are explored in this paper by using a steady state, two-dimensional, two-phase, non-isothermal fuel cell model coupled the catalyst layer agglomerate model considering the multi-scale problem of catalyst layer. Results indicate that stoichiometric ratio and average platinum loading do not influence the effect direction of catalyst content distributed randomly on the output power. However, with the stoichiometric ratio rising, the impact degree of catalyst content distributed randomly on the output power first enhances and then diminishes. When the stoichiometric ratio is 1.3, the power density of uniform random distribution changes the most, decreasing by 3.91 %. As the average platinum loading rises, the impact degree of catalyst content distributed randomly on the output power gradually decreases. The power density of uniform random distribution decreases by 4.93 % when the catalyst content is 0.2 mg/cm2. Furthermore, the variation trends of temperature distribution, product and reactant content with stoichiometric ratio and average platinum loading under the platinum loading random distribution condition are consistent with that under the platinum loading homogeneous distribution condition. However, as the stoichiometric ratio rises, the reaction rate distribution becomes more uniform for normal random and homogeneous distributions, but the reaction rate distribution becomes uneven under uniform random distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.