Abstract

This paper investigated the effect of the intermediate reaction, Mg + H 2 → MgH 2 in hydriding combustion synthesis (HCS) process on the structures and hydrogen storage properties of Mg 95Ni 5 prepared by HCS and subsequent mechanical milling (MM), i.e. HCS + MM. When the MgH 2 content in the HCS product was increased from 53 wt.% to 81 wt.%, the hydrogen absorption capacity of our HCS + MM product at 373 K within 100 s was increased from 0.63 wt.% to 4.90 wt.%, and the decomposition temperature onset was decreased approximately from 470 K to 450 K. The improvement in hydrogen storage properties was discussed with respect to the different structures resulted from the different HCS processes by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Moreover, the HCS product (with 81 wt.% MgH 2) milled with 3 wt.% graphite absorbed 5.56 wt.% hydrogen at 373 K in 100 s. The investigation in this study suggested that HCS combined with MM was potential in the preparation of Mg-based materials with excellent hydriding and dehydriding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.