Abstract

Mg 2Ni-based hydride was prepared by hydriding combustion synthesis (HCS), and subsequently modified with various carbonaceous materials including graphite, multi-walled carbon nanotubes (MWCNTs), carbon aerogels (CAs) and carbon nanofibers (CNFs) by mechanical milling (MM) for 5 h. The structural properties of the modified hydrides were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). All of the modified hydrides show amorphous or nanocrystalline-like phases. The hydride modified with graphite exhibits the most homogenous distribution of particles and the smallest particle size. The effects of the modifications on electrochemical properties of the hydride were investigated by galvanostatic charge/discharge, linear polarization, Tafel polarization, electrochemical impedance spectroscopy and potentiostatic discharge measurements. The results show that the maximum discharge capacity, the high rate dischargeability (HRD), the exchange current density and the hydrogen diffusion ability of the hydride modified with the carbonaceous materials are all increased. Especially, the hydride modified with graphite possesses the highest discharge capacity of 531 mAh/g and the best electrochemical kinetics property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call