Abstract

Balsamisides A-D (1-4) are anti-inflammatory and neurotrophic biflavonoidal glycosides originally proposed to possess an epoxide functionality at the C-2/C-3 position. However, there are inconsistencies in their 13C NMR chemical shift values with those of previously reported analogs, indicating that reanalysis of NMR data for structures of 1-4 is necessary. Computational methods aided by the DP4+ probability technique and ECD calculations enabled structural reassignment of 1-4 to have a 2,3-dihydro-3-hydroxyfuran (3-DHF) instead of an epoxide. Additionally, two new biflavonoidal glycosides, balsamisides E and F (14 and 18), possessing a 2,3-dihydro-2-hydroxyfuran (2-DHF) and a 1,4-dioxane ring, respectively, were characterized by conventional NMR and MS data analysis as well as DP4+ and ECD methods. Systematic 13C NMR analysis was performed on the four aforementioned classes of biflavonoids with a 2- or 3-DHF, epoxide, or 1,4-dioxane. As a result, diagnostic 13C NMR chemical shift values of C-2/C-3 for rapid determination of these four biflavonoid classes were formulated, and based on this first empirical rule for (bi)flavonoids eight previously reported ones were structurally revised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.