Abstract

In the present study, 2′-nitrophenyloctahydroquinolinedione and its 3′-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, 1H NMR and 13C NMR spectroscopy. The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for 1H and 13C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, 1H and 13C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call