Abstract

ortho-Quinone methides (o-QMs) are a class of highly reactive intermediates that serve as important nonisolable building blocks (NBBs) in organic synthesis and small-molecule library construction. Because of their instability and nonisolability, most reported o-QMs are generated through in situ chemical synthesis, and only a few natural o-QMs have been reported due to the lack of directed discovery strategies. Herein, a new natural o-QM precursor (trichophenol A, 2) was identified from the fungal strain of Trichoderma sp. AT0167 through genome mining, which was generated by trilA (nonreducing polyketide synthase) and trilB (2-oxoglutarate dependent dioxygenase). Combinatorial biosynthesis via two other known NRPKS genes with trilA and trilB was performed, leading to the generation of five new trichophenol o-QM oligomers (trichophenols D-H, 5-9). The strategy combining genome mining with combinatorial biosynthesis not only targetedly uncovered a new natural o-QM precursor but also produced various new molecules through oligomerization of the new o-QM and its designated o-QM acceptors without chemical synthesis and isolation of intermediates, which was named NBB genome mining-combinatorial biosynthesis strategy for o-QM molecule library construction. This study provides a new strategy for the targeted discovery of natural o-QMs and small-molecule library construction with natural o-QMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.