Abstract
Neutron spin-echo spectroscopy is used to study the topology of aerogels. Topology or connectivity is varied through precursor chemistry and thermal annealing. Topology is characterized using the concept of fractons (the vibrational excitations of a fractal network). A qualitative difference is observed in the spectrum of polymeric vs. colloidal aerogels, the latter showing a peak in the density of vibrational states. For colloidal aerogels whose structure appears to arise from phase separation in the solution precursor, low-energy excitations were only observed in the lowest density material studied. Finally, a transition from fractal to colloidal microstructure was observed during the sintering of polymeric aerogels. This transformation revealed itself as a transition from a fracton-like to a peaked density of states function.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have