Abstract

Implications of reduction procedures applied to the low energy part of the vibrational density of states in glasses and supercooled liquids are considered by advancing a detailed comparison between the excess – over the Debye limit – vibrational density of states g(ω) and the frequency-reduced representation g(ω)/ω2 usually referred to as the Boson peak. Analyzing representative experimental data from inelastic neutron and Raman scattering, we show that reduction procedures distort to a great extent the otherwise symmetric excess density of states. The frequency of the maximum and the intensity of the excess experience dramatic changes; the former is reduced while the latter increases. The frequency and the intensity of the Boson peak are also sensitive to the distribution of the excess. In the light of the critical appraisal between the two forms of the density of states (i.e. the excess and the frequency-reduced one) we discuss changes of the Boson peak spectral features that are induced under the presence of external stimuli such as temperature (quenching rate, annealing), pressure, and irradiation. The majority of the Boson peak changes induced by the presence of those stimuli can be reasonably traced back to simple and expected modifications of the excess density of states and can be quite satisfactorily accounted for by the Euclidean random matrix theory. Parallels to the heat capacity ‘Boson peak’ are also briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call