Abstract

The intermixing of roquesite (CuInS 2) and kesterite (Cu 2ZnSnS 4), i. e. Cu(In x(ZnSn) 1−xS 2 was investigated by a combination of neutron and X-ray powder diffraction. Samples with 0 ≤ × ≤ 1 were synthesized by a solid state reaction of the pure elements in evacuated silica tubes at 800 °C and cooled with a 10 K/h rate after the final annealing. The structural parameters of CuIn x(ZnSn) 1−xS 2 were determined by simultaneous Rietveld refinement of neutron and X-ray diffraction data. The microstructure and chemical composition of the samples were investigated by electron microprobe analysis. A broad miscibility gap exists in the region 0.4 ≤ × < 0.8 indicated by the coexistence of two phases, an In-rich ( x ~ 0.77) and a Zn-Sn-rich ( x ~ 0.33) phase. Cu(In x(ZnSn) 1−xS 2 mixed crystals with 0 ≤ x < 0.4 crystallize in the kesterite type structure, and with 0.8 ≤ × ≤ 1.0 in the chalcopyrite type structure. In the latter In, Zn and Sn are disordered on the In site. In the mixed crystals the lattice constant a and c show a linear dependence on chemical composition, whereas the tetragonal deformation Δ = 1−c/2a varies nonlinearly. Moreover in the mixed crystal with x ~ 0.15 the tetragonal deformation is equal zero and thus its structure is characterized by a pseudo-cubic unit cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.