Abstract

Time-resolved Fourier transform infrared (FTIR) spectroscopy with polarized light was employed to study the structure and mobility of a homologous series of ferroelectric liquid crystalline polymers (FLCPs) and ferroelectric liquid crystalline elastomers (FLCEs) in response to an external electric field. The chemical composition of the samples, besides the cross-linking units, is similar. For the elastomers, two different cross-linking architectures are realized: “intralayer” cross-linking leads to the formation of two-dimensional networks, whereas “interlayer” cross-linking forms three-dimensional networks. Due to its specificity, FTIR spectroscopy enables analysis of the reorientational dynamics for the different molecular moieties in detail, thus revealing information about reorientation times, angular excursion, and the phase relationship in the rearrangement of the various molecular groups. In comparison to the un-cross-linked FLCP, both elastomeric samples exhibited smaller reorientation angles and an increase of the reorientation times. In the case of the interlayer cross-linked FLCE, an elastic memory effect was observed: For the reversal from negative to positive field polarity, the reorientation times were longer than for those in the opposite direction. For the intralayer cross-linked sample, it was shown that the backbone molecules reorient slower than the other molecular units (“locomotive effect”). For the un-cross-linked FLCP and the two FLCE samples, different coupling mechanisms between the network and the mesogenic parts are derived from the measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.