Abstract

The molecular structure and reorientation of ferroelectric liquid crystalline elastomers (FLCE) in response to an external electric field is studied on a microsecond scale with time-resolved Fourier transform infrared (FTIR) spectroscopy. In order to analyze the influence of the network on the molecular structure and mobility in FLCE, three similar FLC polysiloxanes are under study that differ just in their crosslinking architecture: besides the uncrosslinked polymer we obtain by photocrosslinking FLCE in which the backbones of either adjacent smectic layers (“interlayer”) or of the same smectic layer (“intralayer”) are preferably crosslinked. It is shown that the crosslinking leads to a slowing down of the molecular mobility which is stronger for the inter-than for the intralayer FLCE. Asymmetries in the reorientation times and/or in the reorientation angles are observed (elastic memory effect). The intralayer crosslinking causes a “locomotive effect”: the reorientation of the mesogenic cores precedes that ofthe backbones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.