Abstract
Seed endophytes in maize, which facilitate the transmission of microorganisms from one plant generation to the next, may play a crucial role in plant protection and growth promotion. This study aimed to investigate the effects of various maize varieties on the communities of endophytic bacteria in seeds and germinating roots. This study utilized Illumina high-throughput sequencing technology to examine the structural and diversity differences of endophytic bacterial communities within seed maize (BY1507), silage maize (QQ446), and wild maize (Teosinte) in both seeds and germinating roots. The results showed that 416 bacterial genera were detected, with Pantoea, Lachnospiraceae, Pararhizobium, Enterobacteriaceae, Stenotrophomonas, and Pseudonocardia being the most prevalent (relative abundance > 10%) at the genus level. No significant difference was observed in diversity indices (Chao1, ACE, Shannon, and Simpson) of seed endophytes among BY1507, QQ446, and Teosinte. The Shannon and Simpson indices for the germinating root endophyte from the wild variety (Teosinte) were significantly higher than the domesticated varieties (BY1507 and QQ446). PCoA revealed a notable overlap in the endophytic bacterial communities from the seeds of BY1507, QQ446, and Teosinte. Yet, clustering patterns were found. Co-occurrence network analysis showed that BY1507, QQ446, and Teosinte share a notable proportion of shared endophytic bacteria (>30%) between the seeds and germinating roots. This investigation elucidates the characteristics of endophytic microbial communities of seeds and germinating roots with seed maize, silage maize, and wild maize, offering data for future research on the physiological ecological adaptation of these endophytic microbial communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.