Abstract

The Food and Agriculture Organization of the United Nations (FAO) has identified hybrid rice as ideal for addressing food scarcity in poor nations. A comprehensive investigation of the endophytic bacteria in hybrid rice seeds is essential from a microecological perspective to illuminate the mechanisms underlying its high yield, high quality, and multi-resistance. The endophytic bacterial diversity and community structures of 11 genetically correlated hybrid rice seeds with different rice blast resistance levels were studied using high-throughput sequencing (HTS) on the Illumina MiSeq platform to reveal their "core microbiota" and explore the effect of genotypes, genetic relationships, and resistance. Proteobacteria (78.15-99.15%) represented the most abundant group in the 11 hybrid rice cultivars, while Pantoea, Pseudomonas, and Microbacterium comprised the "core microbiota." Hybrid rice seeds with different genotypes, genetic correlations, and rice blast resistance displayed endophytic bacterial community structure and diversity variation. In addition, the network relationships between the rice seed endophytic bacteria of "the same female parent but different male parents" were more complex than those from "the same male parent but different female parents." Matrilineal inheritance may be the primary method of passing on endophytic bacteria in rice from generation to generation. The endophytic bacterial interaction network in rice blast-resistant hybrid rice seed varieties was more complicated than in susceptible varieties. In summary, this study demonstrated that the genotype, genetic relationship, and rice blast resistance were important factors affecting the community structures and diversity of endophytic bacteria in hybrid rice seeds, which was vital for revealing the interaction between endophytic bacteria and the host. KEY POINTS: • Pantoea, Pseudomonas, and Microbacterium represent the main endophytic bacteria in hybrid rice seeds. • Genotype is the primary factor affecting endophytic bacterial diversity in hybrid rice seeds. • The diversity of the endophytic bacterial community in hybrid rice seeds is related to their genotypes, genetic relationships, and rice blast resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.