Abstract
Phthalates (PAEs) accumulated in agricultural soils and rice have increased human exposure risks. Microbial degradation could efficiently reduce the residue of organic pollutants in soil and crop plants. Here, we hypothesized that endophytic bacteria from wild rice have the potential for degradation of PAEs and plant growth promoting. The endophytic bacterial community and functional diversity in wild rice (Oryza meridionalis) were analyzed for the first time, and the potential for PAE degradation and plant growth promoting by endophytes were investigated. The results of Illumina high-throughput sequencing revealed that abundant endophytes inhabited in wild rice with Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria being the dominant phyla. Endophytic bacterial diversity and complexity were confirmed by isolation and clustering of isolates. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that endophytes exerted diverse functions such as plant growth promoting, xenobiotics biodegradation, pollution remediation and bacterial chemotaxis. Pure culture experiment showed that 30 isolated endophytic strains exhibited in vitro plant growth promoting activities, and rice plants inoculated with these strains confirmed their growth promoting abilities. Some endophytic strains were capable of efficiently degrading PAEs, with the highest removal percentage of di-n-butyl phthalate (DBP) up to 96.1% by Bacillus amyloliquefaciens strain L381 within 5 days. Synthetic community F and strain L381 rapidly removed DBP from soil (removing 91.0%–99.2% within 10 d and from rice plant slurry (removing 93.4%–99.2% within 5 d). These results confirmed the hypothesis and demonstrated the diversity of endophytic bacteria in wild rice with diverse functions, especially for plant growth promoting and removing PAEs. These multifunctional endophytic bacteria provided good alternatives to reduce PAE accumulation in crops and increase yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.