Abstract

The acoustic noise in a magnetic resonance imaging (MRI) scanner bore is mainly introduced by the vibration of gradient coils. The interaction between acoustic modes in the scanner bore and structure modes in the coil structure leads to structural-acoustic coupling. In order to implement quiet MRI design, the structural-acoustic coupling mechanism in MRI machines needs to be fully investigated. Structural analysis was first implemented using Love's classical shell theory. The concept of a "virtually closed cavity" was used in the acoustic modal analysis of the gradient coil duct. The dispersion curves and the number of modes per frequency band were used to reveal modal distribution properties for both structural modes and acoustic modes. Structural-acoustic coupling modes were identified by superposition of the dispersion diagrams of the structural waves and acoustic waves. Experimental validation was implemented separately for the structural analysis and acoustic analysis. Independent structural modes and acoustic modes and their distribution patterns were calculated up to 3000Hz with various boundary conditions. Coupling modes were clearly revealed using the analysis procedures presented in this paper and were found to be in agreement with the ones identified from experimental measurements. These methods are effective for coupled and uncoupled modal analysis of MRI scanner systems and can be used for quiet MRI design or sound absorber design for existing MRI systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call