Abstract

High speed switching of current in gradient coils within high magnetic field strength Magnetic Resonance Imaging (MRI) scanners may result in high acoustic sound pressure levels in and around these machines. Many studies have already been conducted to characterize the sound field in and around MRIs and various methods have been investigated to attenuate the noise generated. To characterize the vibration properties of the gradient coil, a modified Finite Element (FE) model was developed according to the dimensional design of an available gradient coil insert and the concentration of the copper windings in the coil. The finite element analysis results were verified through experimental modal testing of the same gradient coil in a free–free state (no boundary constraints). Comparisons show that the FE model predicts the vibration properties extremely accurately. Based on the verified FE model, boundary conditions (supports) were added to the model to simulate the operating condition when the gradient coil insert is in place in an MRI machine. Vibration analysis results from the FE model were again verified through experimental vibration testing with the gradient coil insert installed in a 4 T MRI and excited using swept sinusoidal time waveforms. Through a comparison of the vibration signals generated it was found that the vibration resonances, both from the FE model and the experimental vibration testing, shift to higher frequencies after the boundary constraints were applied, as was expected. The predicted vibration response was very close to that measured from the gradient coil insert in operation. The FE modeling procedure that has been developed could easily be used to accurately predict the vibration properties of other gradient coil designs. Furthermore, the vibration analysis results from the FE model could be used in acoustic noise analysis to predict the sound pressure level produced by different types of input current pulse sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call