Abstract
Quantitative parameter mapping conventionally relies on curve fitting techniques to estimate parameters from magnetic resonance image series. This study compares conventional curve fitting techniques to methods using neural networks (NN) for measuring T2 in the prostate. Large physics-based synthetic datasets simulating T2 mapping acquisitions were generated for training NNs and for quantitative performance comparisons. Four combinations of different NN architectures and training corpora were implemented and compared with four different curve fitting strategies. All methods were compared quantitatively using synthetic data with known ground truth, and further compared on in vivo test data, with and without noise augmentation, to evaluate feasibility and noise robustness. In the evaluation on synthetic data, a convolutional neural network (CNN), trained in a supervised fashion using synthetic data generated from naturalistic images, showed the highest overall accuracy and precision amongst the methods. On in vivo data, this best performing method produced low-noise T2 maps and showed the least deterioration with increasing input noise levels. This study showed that a CNN, trained with synthetic data in a supervised manner, may provide superior T2 estimation performance compared to conventional curve fitting, especially in low signal-to-noise regions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have