Abstract

This paper presents a structural synthesis using the Mixed-Integer Non-Linear Programming (MINLP) approach. The MINLP is a combined discrete/continuous optimization technique, where discrete binary 0-1 variables are defined for optimization of discrete alternatives and continuous variables for optimization of parameters. The MINLP optimization to a structural synthesis is performed through three steps: i.e. the generation of a mechanical superstructure, the modelling of an MINLP model formulation and the solution of the defined MINLP problem. As the discrete/continuous optimization problems are usually non-convex and highly non-linear, the Modified Outer-Approximation/EqualityRelaxation (OA/ER) algorithm is selected to be used for the optimization. The accompanied Linked Multilevel Hierarchical Strategy (LMHS) is developed to accelerate the convergence of the above-mentioned algorithm. Some examples are presented at the end of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.