Abstract

The use of a family of dinuclear copper(II) complexes, prepared from enantiopure disubstituted oxamidato ligands derived from the natural amino acids l-alanine, l-valine, and l-leucine, as metalloligands toward barium(II) cations leads to the formation of three novel three-dimensional (3D) chiral metal–organic frameworks (MOFs). They exhibit different architectures, which serve as playground to study both how the chiral information contained in the starting enantiopure ligands is ultimately transmitted to the 3D structure and the effect of the size of the aliphatic residue of the amino acid on the final architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call