Abstract
The introduction of chirality into easy-scalable metal-organic frameworks (MOFs) gives rise to the development of advanced electrochemical sensors. However, integrating chirality by directly connecting metal ions and chiral ligands is unpredictable. Postmodification synthesis is a common method for synthesizing chiral MOFs, but it reduces the size of chiral channels and poses obstacles to the approach of chiral guest molecules. In this work, missing connection defects were introduced into the chiral MOFs through defect engineering strategies, which enhance the recognition of the target enantiomers. pH can tune enantioselectivity reversal in defective chiral MOFs. The chiral MOFs show enantioselectivity for d-Trp at pH = 5 and l-Trp at pH = 8. From the results of zeta potential, regardless of pH 5 or 8, the chiral MOF has a positive potential. The chiral MOFs are positively charged, while tryptophan is negatively charged when pH = 8. The difference in the positive and negative charge interactions between the two amino acids and chiral MOFs leads to chiral recognition. However, the difference in π-π interaction between chiral MOF and Trp enantiomers mainly drives chiral recognition under pH = 5. This study paves a pathway for the synthesis of defective chiral MOFs and highlights the pH-tuned enantioselectivity reversal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.