Abstract

Summary Zr-carboxylate metal-organic frameworks (MOFs) are structurally robust materials, in part due to their strong coordination bonds. The regioselective Zr–O bond cleavage and formation between 3D architectures are thus challenging and are heretofore unexplored. In this work, by introducing highly flexible 18-crown-6-ether functionalities into a homochiral Zr-MOF, we report an unprecedented topology transition in which a 4,10-connected framework undergoes a rapid solid-state transition into a thermodynamically more stable 4,8-connected analog by a regioselective-linker-elimination under ambient conditions. The transition process was unambiguously unraveled by single-crystal and powder X-ray diffraction studies, and we proposed a possible transition mechanism based on various control experiments and theoretical calculations. The excellent chemical stability and substantially expanded porosity and pore apertures endowed the transformed chiral MOF with an exceptional capacity for the enantioadsorptive and solid-phase extractive separation of the racemic drug molecule of lansoprazole with 98% ee and 93% ee, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.