Abstract

We show that in deeply supercooled liquids, structural relaxation proceeds via the accumulation of Eshelby events, i.e. local rearrangements that create long-ranged and anisotropic stresses in the surrounding medium. Such events must be characterized using tensorial observables and we construct an analytical framework to probe their correlations using local stress data. By analyzing numerical simulations, we then demonstrate that events are power-law correlated in space, with a time-dependent amplitude which peaks at the alpha relaxation time τ(α). This effect, which becomes stronger near the glass transition, results from the increasingly important role of local stress fluctuations in facilitating relaxation events. Our finding precludes the existence of any length scale beyond which the relaxation process decorrelates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.