Abstract

This paper proposes two quantitative criteria for removing railroad wheels from service, based on real-time structural health monitoring trends that are developed using data collected from trains while in service. The data is collected using wheel impact load detectors (WILDs). These impact load trends are able to distinguish wheels with a high probability of failure from high-impact wheels with a low probability of failure. The trends indicate the critical wheels that actually need to be removed, while at the same time allowing wheels that aren’t critical to remain in service. As a result, the safety of the railroad will be much improved by being able to identify and remove wheels that have high likelihood of causing catastrophic failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.