Abstract

The Wheel Defect Prevention Research Consortium (WDPRC) conducted analyses of wheel impact load detector (WILD) data to explore how wheelset position and operating environment affect rolling contact fatigue (RCF). The typical three-piece freight car truck used in North America produces higher tangential wheel/rail contact forces on the wheelset in the lead position than on the wheelset in the trail position of a truck as a car negotiates a curve. An analysis of WILD data shows that these higher forces are contributing to more shelling damage on wheelsets that are consistently in the lead position of a truck. Datasets in which the cars are frequently oriented with the A-end leading show the largest percentage of elevated WILD readings in the lead position of the lead truck (axle 4) followed by the lead position of the trail truck (axle 2). Likewise, datasets in which the cars are frequently oriented with the B-end leading show the largest percentage of elevated WILD readings in the lead position of the lead truck (axle 1) followed by the lead position of the trail truck (axle 3). Additionally, datasets in which there is an equal mix of car orientations show a much more evenly distributed location of elevated WILD readings. Another analysis of WILD data from five trainsets of nearly identical cars shows that any differences in wheel tread damage due to component differences are insignificant in comparison to the differences in wheel tread damage associated with environmental factors. While this analysis does not address component specification differences that could potentially have a large influence on shelling (such as M-976 trucks in comparison to standard trucks), it does show that environmental factors can play a large role in wheel tread damage. Car routing and loading characteristics were investigated as possible wheel damage factors. It appears that cars running on routes through terrain with longer, steeper grades may be prone to increased wheel shelling, probably due to thermal mechanical shelling (TMS). Side-to-side imbalanced loading appears to play a minor role in wheel shelling for two of the five trainsets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.