Abstract
Uranium-zirconium (U-Zr) alloy fuels have been taken into consideration for fast reactors because of their superior reactor safety, high uranium (U) density, and excellent thermal conductivity. In this paper, the structural and mechanical properties of metallic U and U-Zr alloy fuels are calculated at the atomic level by density functional theory–based calculations with Hubbard U (density functional theory + U) corrections. Several structure-property relations, such as lattice volume, bulk modulus, Young’s modulus, shear modulus, electronic density of states, etc. are calculated for U metal and U-Zr alloy fuels. In addition, the Zr content in metallic U fuel is adjusted from roughly 5 at. % to 15 at. % in order to determine how the Zr content affects the characteristics of U-Zr fuel material. A linear relationship between the volume and Zr concentrations is observed. The concentration of Zr in the fuel affects the mechanical characteristics of U-Zr alloy fuel. It is also observed that the electronic structure of the α-U phase is not changed significantly in the presence of Zr. Our computations provide insight into how U-Zr alloy fuels behave in reactor conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.