Abstract
In this work, the structural and transport properties of Mg-doped Sn-based alloys have been investigated. The temperature-dependent transport and structural properties of Sn–Mg alloys were investigated for five different samples (Pure Sn, Sn-1.0 wt% Mg, Sn-2.0 wt% Mg, Sn-6.0 wt% Mg and Pure Mg). Scanning electron microscopy (SEM), X-ray diffraction and energy dispersive X-ray analysis measurements were carried out in order to clarify the structural properties of the samples. It was found that the samples had tetragonal crystal symmetry, except for pure Mg which had hexagonal crystal symmetry. We also found that the cell parameters changed slightly with the addition of Mg element. The SEM micrographs of the samples showed that they had smooth surfaces with a clear grain boundary. The electrical and thermal conductivity of the samples were measured by four-point probe and the radial heat flow method, respectively. The electrical resistivity of the samples increased almost linearly with the increasing temperature. The thermal conductivity values ranged between 0.60 and 1.00 W/Km, while they decreased slightly with temperature and increased with Mg composition. The thermal conductivity values of the alloys were in between the values of pure Sn and Mg. The thermal conductivity results of the alloys were compared with other available results, and a good agreement was seen between the results. In addition, the temperature coefficients of electrical resistivity and thermal conductivity were determined; these were independent of the composition of the alloying elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.