Abstract

Epitaxial GaN films were grown on sapphire (0001) substrates by an ultra-high vacuum laser assisted molecular beam epitaxy (MBE) system using GaN solid target with laser energy density of ∼3 J cm−2 at various growth conditions. The influence of growth temperature, layer thickness and growth rate on the structural properties of the GaN layers have been studied using high resolution x-ray diffraction, field emission scanning electron microscopy and scanning tunneling microscopy at room temperature. The epitaxial GaN layers grown at 700 °C exhibited good crystalline properties with a screw dislocation density of 3.1 × 108 cm−2 as calculated from the x-ray rocking curve measurements. The electronic properties such as core levels and valence band of GaN film were examined using x-ray photoelectron spectroscopy. Chemical composition of the GaN layer was determined using core level spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call