Abstract

A scheme of terahertz (THz) radiation generation is proposed by beating of two spatial-triangular laser beams in plasma with a spatially periodic density when electron–neutral collisions have taken into account. In this process, the laser beams exert a ponderomotive force on the electrons of the plasma and impart the oscillatory velocity at the difference frequency in the presence of a static magnetic field which is applied parallel to the direction of the lasers. We show that higher efficiency and stronger THz radiation are achieved when the parallel magnetic field is used to compare the perpendicular magnetic field. The effects of beam width of lasers, collision frequency, periodicity of density ripples, and magnetic field strength are analyzed for strong THz radiation generation. The THz field of the emitted radiations is found to be highly sensitive to collision frequency and magnetic field strength. In this scheme with the optimization of plasma parameters, the efficiency of order 21% is achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.