Abstract

Integrated wavelength filters with high optical rejection are key components in several silicon photonics circuits, including quantum photon-pair sources and spectrometers. Non-coherent cascading of modal-engineered Bragg filters allows for remarkable optical rejections in structures that only support transverse-electric (TE) polarized modes such as uncladded 220-nm-thick silicon. However, the restriction to TE-only platforms limits the versatility of the non-coherent cascading approach. Here, we propose and experimentally demonstrate a new, to the best of our knowledge, approach for high-rejection filters in polarization-diverse platforms by combining non-coherent cascading of modal-engineered Bragg filters and anisotropy-engineered metamaterial bends. Bragg filters provide a high rejection of the TE mode, while the metamaterial bends remove any residual power propagating in the transverse-magnetic (TM) mode, without any penalty in terms of insertion loss or device footprint. Based on this strategy, we demonstrate optical rejection exceeding 60 dB in 300-nm-thick, cladded silicon waveguides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.