Abstract

A multilevel grating coupler based on silicon-on-insulator (SOI) material structure is proposed to realize the coupling between waveguide and waveguide or waveguide and fiber. This coupler is compatible with the current fabrication facilities for complementary metal oxide semiconductor (CMOS) technology with vertical coupling. This structure can realize coupling when the beams with transverse electric (TE) polarization and transverse magnetic (TM) polarization are incident at the same time. The influences of the grating coupler parameters including wavelength, the thickness of waveguide layer, the thickness of SiO2 layer and the number of steps on the TE mode and TM mode coupling efficiencies are discussed. Theory researches and simulation results indicate that the wavelength range is from 1533 nm to 1580 nm when the TE mode and TM mode coupling efficiencies are both more than 40% as the grating period is 0.99 μm. The coupling efficiencies of the incident TE and TM modes are 49.9% and 49.5% at the wavelength of 1565 nm, respectively, and the difference between them is only 0.4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.