Abstract

BackgroundH. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs.ResultsWe develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both host and pathogen proteins involved in host-pathogen PPIs tend to have lower charge, and tend to be more hydrophilic.ConclusionsOur stringent homology-based prediction approach provides a better strategy in predicting PPIs between eukaryotic hosts and prokaryotic pathogens than a conventional homology-based approach. The properties we have observed from the predicted H. sapiens-M. tuberculosis H37Rv PPI network are useful for understanding inter-species host-pathogen PPI networks and provide novel insights for host-pathogen interaction studies.ReviewersThis article was reviewed by Michael Gromiha, Narayanaswamy Srinivasan and Thomas Dandekar.

Highlights

  • H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv

  • When predicting the H. sapiens– M. tuberculosis H37Rv PPIs we only need to identify the prokaryotic homologs between template and targeted species in this situation

  • If there are 3 template human-bacteria PPIs transferring to the same H. sapiens–M. tuberculosis H37Rv PPI, the PPI’s consensus score is “3”

Read more

Summary

Introduction

H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Homology-based approaches are the conventional way of predicting both intra-species and inter-species PPIs, with the assumption that the interaction between a pair of proteins in one species is likely to be conserved in related species [6] They are among the most frequently used methods in predicting host-pathogen PPIs , either being used alone [7,8,9,10] or in combination with other methods [11]. An important point and very useful to get a reasonable paper from your study is to define what you mean by “interaction” This reviewer first assumed that you primarily wanted to predict a direct protein-protein interaction, in other words something that you can later directly experimentally verify, e.g., by immune precipitation, crosslink etc. In the revised manuscript we explicitly state this in the following words: “In this work, we only focus on the direct physical protein-protein interaction (PPI), all the PPIs mentioned in this work are direct physical protein-protein interaction.”

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call