Abstract

BackgroundH. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited.ResultsWe develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces.We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies.We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some important properties of domains involved in host-pathogen PPIs. We find that both host and pathogen proteins involved in host-pathogen PPIs tend to have more domains than proteins involved in intra-species PPIs, and these domains have more interaction partners than domains on proteins involved in intra-species PPI.ConclusionsThe stringent DDI-based prediction approach reported in this work provides a stringent strategy for predicting host-pathogen PPIs. It also performs better than a conventional DDI-based approach in predicting PPIs. We have predicted a small set of accurate H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies.

Highlights

  • H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv

  • We develop a stringent Domain-domain interaction (DDI)-based approach for predicting the H. sapiens-M. tuberculosis H37Rv PPIs by taking into account of the differences between each specific domain sequence on each annotated region of proteins under the same domain ID

  • To better compare and assess the performance of the stringent and the conventional DDI-based approaches, we focus on the top 839 PPIs predicted by both approaches, choosing interval of 10 PPIs as we plot the percentage of PPIs having coherent GO annotation on the same figure; see Figure 5

Read more

Summary

Introduction

H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. Current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. the performance of DDI-based host-pathogen PPI prediction has been rather limited. High-quality large-scale experimental host-pathogen PPIs are not available in many host-pathogen systems, especially between H. sapiens and M. tuberculosis H37Rv. Many computational approaches have been developed to predict host-pathogen PPIs including approaches based on homology, interacting domain/motif, structure, and even machine learning [5]. DDI-based approaches are often used for predicting both intra-species and inter-species PPIs, with the assumption that domain-domain interactions mediate the protein-protein interactions, because domains are the basic building blocks determining the structure and function of proteins [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call