Abstract
Heat stress (HS) poses a major challenge to plants and agriculture, especially during climate change-induced heatwaves. Plants have evolved mechanisms to combatHS and remember past stress. This memory involves lasting changes in specific stress responses, enabling plants to better anticipate and react to future heat events. HS memory is a multi-layered cellular phenomenon that, in addition to epigenetic modifications, involves changes in protein quality control, metabolic pathways and broader physiological adjustments. An essential aspect of modulating stress memory is timely resetting, which restores defense responses to baseline levels and optimizes resource allocation for growth. Balancing stress memory with resetting enables plants to withstand stress while maintaining growth and reproductive capacity. In this review, we discuss mechanisms and regulatory layers of HS memory and resetting, highlighting their critical balance for enhancing stress resilience and plant fitness. We primarily focus on the model plant Arabidopsis thaliana due to the limited research on other species and outline key areas for future study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have