Abstract

This work presents a discussion on a series of finite element analyses that assess stress evolution in the coating layers of tristructural isotropic (TRISO) particles in contact with each other while embedded in a matrix. The initial simulations were of applied uniaxial pressure versus matrix elastic modulus. These simulations predicted increasing stress in the silicon carbide coating layers of the TRISO particles with decreasing matrix elastic modulus. The second set of simulations focused on the effects of heating and cooling and the associated dimensional change on the state of stress in the coating layers. The general finding was that there was no significant difference below the coating layer’s deposition temperature. However, above the deposition temperature, the contacting particles had higher stress compared with those that were separated. The third set of simulations focused on the effects of irradiation, specifically, creep, dimensional change, and swelling. An interface debonding model was introduced since these potential effects have a significant bearing on predicted stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.