Abstract

The Through-SiliconVias (TSV) is a key component of three dimensional electronic packaging. Obtaining its stresses is very important for evaluating its reliability. A micro-infrared photoelasticity system with a thermal loading function was built and applied to characterize the stresses of the TSV structure. Through testing it was found that the stress of each TSV is different even if their fabrication technology is exactly the same, that different TSVs obtain their stress free states at different elevated temperatures, and that their stress free states are maintained even when the temperature is further elevated. A finite element model was used to quantitatively determine the stresses of a TSV under different stress-free temperatures. Different virtual photoelasticity fringe patterns were then created based on the principle of photoelasticity and the simulated stresses. Comparing the virtual fringe patterns with the experimental pattern, an appropriate virtual photoelasticity fringe pattern and the corresponding stresses of TSV were determined

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.