Abstract

A robust strategy for controlling the level of residual stress in polycrystalline films remains elusive, owing to the complex coevolution of the surface, microstructure, and intrinsic stress during Volmer–Weber film growth. Recent improvements in the understanding of stress evolution mechanisms have led to the possibility of engineering the intrinsic stress through the control of thin film growth conditions. Here, the authors demonstrate stress engineering during deposition of polycrystalline Ni films through control of the oxygen partial pressure. The physical mechanisms of stress management during codeposition of nickel and oxygen are investigated using in situ stress measurements and ex situ structural and chemical characterizations. The intrinsic stress in Ni films is affected by grain growth during deposition (which causes a tensile stress) and by Ni adatom trapping at grain boundaries and oxygen incorporation in the Ni lattice (which cause a compressive stress). The authors show direct evidence that a small amount of oxygen suppresses grain growth during deposition. They suggest that the presence of chemisorbed oxygen limits surface diffusion of Ni adatoms, thereby limiting adatom trapping at grain boundaries. The presence of oxygen therefore affects the mechanisms for development of both tensile and compressive stresses, providing a direct method for engineering the residual stress in as-deposited Ni films. Finally, the authors demonstrate a process for evaporative deposition of “zero” stress Ni films by introducing a very low level of background impurities, with the resultant films containing only 1.2 at. % oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.