Abstract
To clarify the effects of vanadium additions on the strengthening mechanisms of tempered martensitic steel, the microstructures, precipitates, dislocation densities, and tensile properties of water-quenched and tempered Fe–0.2C–0.5Si–2.5Mn–xV (mass%; x = 0–0.82) steels were analyzed. The vanadium carbide precipitates were plate-shaped and had a Baker–Nutting orientation relationship with the ferrite matrix. The size and shape of the vanadium carbide precipitates on the slip plane were considered when evaluating the contribution of precipitation strengthening. The increase in yield strength upon adding 0.82 mass% vanadium to the tempered steel was mainly caused by precipitation strengthening owing to the vanadium carbide precipitates and dislocation strengthening owing to the high dislocation density. This study demonstrates that the contribution of precipitation strengthening might be overestimated if it is assumed that the precipitates all hinder dislocation motion by the Orowan mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: MATERIALS TRANSACTIONS
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.