Abstract

The random nature of diffusing jumps and cascade occurrence produce stochastic fluctuations of the point-defect fluxes. The effect of such fluctuations on the kinetics of void growth is investigated in the present paper. It is found that the non-linear coupling between the stochastic fluctuations and the void sizes may lead to the instability of void evolution within the mean-field theory, when the sizes of voids and their growth rates are both relatively small. The growth rate of voids becomes dominated by the stochastic component, causing the smaller voids to shrink away. This effect is investigated in terms of a non-equilibrium phase transition induced by a purely random stochastic noise. The derived conditions for this non-equilibrium transition are compared favourably with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call