Abstract

We examine the effect of elastic stresses induced by growing voids on the diffusion vacancy fluxes using newly derived equations. One of the main goals of our work is to obtain a kinetic equation for the growth rate of voids in cubic metals. The diffusion equation for vacancies, in which the influence of elastic stress near the void on the flux is taken into account, is linearized and solved. Then after mathematical transformations that are similar to Lifshitz - Slyozov theory, kinetic equations for the growth rate of the voids in fcc and bcc metals are obtained. The kinetic equations contain additional terms due to developed strain. This feature distinguishes the present equation from known ones and changes the kinetic of void growth. The functional dependence on strain is determined by coefficients, which characterize the strain influence on diffusion (SID coefficients). These coefficients are very sensitive to the atomic structure in the nearest vicinity of the saddle-point configuration. We have built an advanced model to evaluate them. SID coefficient simulation is the next step of this work. Using the kinetic equations and the SID coefficients, we calculate the void growth rate in cubic metals under different conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.