Abstract
How signals propagate through a network as a function of the network architecture and under the influence of noise is a fundamental question in a broad range of areas dealing with signal processing - from neuroscience to electrical engineering and communication technology. Here we use numerical simulations and a mean-field approach to analyze a minimal dynamic model for signal propagation. By labeling and tracking the excitations propagating from a single input node to remote output nodes in random networks, we show that noise (provided by spontaneous node excitations) can lead to an enhanced signal propagation, with a peak in the signal-to-noise ratio at intermediate noise intensities. This network analog of stochastic resonance is not captured by a mean-field description that incorporates topology only on the level of the average degree, indicating that the detailed network topology plays a significant role in signal propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.