Abstract

Arbuscular mycorrhizal (AM) fungi play an important role in facilitating ecosystem function and stability. Yet, their community response patterns and ecological assembly processes along elevational gradients which cross a range of climates and soil conditions remain elusive. We used Illumina MiSeq sequencing to examine trends in soil AM fungal community along an elevational gradient from 100 m to 2300 m in central Japan. A total of 750 operational taxonomic units (OTUs) affiliated to 12 AM fungal genera were identified from soil samples, and the AM fungal community composition differed strongly with elevation, with variance explained more by climate, followed by soil and plant factors. The AM fungal α-diversity, network connectivity and complexity between AM fungal taxa and also with plant communities all exhibited a maximum at the mid-elevation of 800 m and then declined, principally influenced by soil pH and precipitation. Stochastic processes dominated AM fungal community assembly across the whole elevation gradient, with homogenizing dispersal being the main process. Only when AM fungal communities were contrasted across a relatively broad range of elevations, did variable selection (deterministic process) became significant, and even then in a mixed role with stochasticity. While OTUs of AM fungi are clearly adapted to particular environmental ranges, stochasticity due to rapid dispersal has a major role in determining their occurrence, suggesting that AM fungi may possess generalized and interchangeable niches, and can adjust their distribution rapidly - at least on the scale of a single mountain. This finding emphasizes that the roles of AM fungi in plant ecology may be non-specific and easily substituted, and furthermore that there is rapid local scale dispersal, which may allow plants to maintain effective AM associations under environmental change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call